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Abstract

Domain adaptation solves a learning problem in a
target domain by utilizing the training data in a dif-
ferent but related source domain. Intuitively, dis-
covering agood feature representation across do-
mains is crucial. In this paper, we propose to
find such a representation through a new learn-
ing method,transfer component analysi{§ CA),

for domain adaptation. TCA tries to learn some
transfer componentacross domains in a Repro-
ducing Kernel Hilbert Space (RKHS) using Max-
imum Mean Discrepancy (MMD). In the subspace
spanned by thegeansfer componentslata distrib-
utions in different domains are close to each other.
As a result, with the new representations in this
subspace, we can apply standard machine learning
methods to train classifiers or regression models in
the source domain for use in the target domain. The
main contribution of our work is that we propose
a novel feature representation in which to perform
domain adaptation via a new parametric kernel us-
ing feature extraction methods, which can dramati-
cally minimize thedistancebetween domain distri-
butions by projecting data onto the learreghsfer
components Furthermore, our approach can han-
dle large datsets and naturally lead to out-of-sample
generalization. The effectiveness and efficiency of
our approach in are verified by experiments on two
real-world applications: cross-domain indoor WiFi
localization and cross-domain text classification.

Introduction

in one time period (the source domain) for a new time pe-
riod (the target domain), or to adapt the localization model
trained on one mobile device (the source domain) for a new
mobile device (the target domain). However, the distributions
of WiFi data collected over time or across devices may be
very different, hence domain adaptation is neepiéahg et

al., 2009. Another example is sentiment classification. To
reduce the effort of annotating reviews for various products,
we might want to adapt a learning system trained on some
types of products (the source domain) for a new type of prod-
uct (the target domain). However, terms used in the reviews
of different types of products may be very different. As a re-
sult, distributions of the data over different types of products
may be different and thus domain adaptation is again needed
[Blitzer et al,, 2007.

A major computational problem in domain adaptation is
how to reduce the difference between the distributions of
source and target domain data. Intuitively, discoverigged
feature representation across domains is crucigioddfea-
ture representation should be able to reduce the difference in
distributions between domains as much as possible, while at
the same time preserving important (geometric or statistical)
properties of the original data.

Recently, several approaches have been proposed to learn
a common feature representation for domain adaptation
[Daune 1, 2007; Blitzeret al, 2004. Daung Il [2007
proposed a simple heuristic nonlinear mapping function to
map the data from both source and target domains to a high-
dimensional feature space, where standard machine learning
methods are used to train classifiers. Bliteeal.[2004 pro-
posed the so-called structural correspondence learning (SCL)
algorithm to induce correspondences among features from the
different domains. This method depends on the heuristic se-
lections of pivot features that appear frequently in both do-

Domain adaptation aims at adapting a classifier or regressiamains. Although it is experimentally shown that SCL can re-

model trained in a source domain for use in a target domainjuce the difference between domains based opltdéstance
where the source and target domains may be different but reneasurd Ben-Davidet al, 2007, the heuristic criterion of
lated. This is particularly crucial when labeled data are inpivot feature selection may be sensitive to different applica-
short supply in the target domain. For example, in indoortions. Panet al.[2009 proposed a new dimensionality re-
WiFi localization, it is very expensive to calibrate a localiza- duction method, Maximum Mean Discrepancy Embedding
tion model in a large-scale environment. However, the WiFi(MMDE), for domain adaptation. The motivation of MMDE
signal strength may be a function of time, device or spaceis similar to our proposed work. It also aims at learning a
depending on dynamic factors. To reduce the re-calibratioshared latent space underlying the domains where distance
effort, we might want to adapt a localization model trainedbetween distributions can be reduced. However, MMDE suf-



fers from two major limitations: (1) MMDE is transductive, However, many of these criteria are parametric, since an in-

and does not generalize to out-of-sample patterns; (2) MMDEermediate density estimate is usually required. To avoid

learns the latent space by solvingsami-definite program such a non-trivial task, a non-parametric distance estimate

(SDP), which is a very expensive optimization problem. between distributions is more desirable. Recently, Borg-
In this paper, we propose a new feature extraction apwardtetal.[2006 proposed théaximum Mean Discrepancy

proach, calledransfer component analysi§JCA), for do- (MMD) as a relevant criterion for comparing distributions

main adaptation. It tries to learn a set of commimnsfer  based on the Reproducing Kernel Hilbert Space (RKHS). Let

componentainderlying both domains such that the differ- X = {z1,...,2,, } andY = {yi, ..., y,, } be random vari-

ence in distributions of data in the different domains, whenable sets with distribution® and Q. The empirical estimate

projected onto this subspace, can be dramatically reducedf the distance betwee andQ, as defined by MMD, is

Then, standard machine learning methods can be used in this

subspace to train classifiers or regression models across do-  pijst(X,Y) =

mains. More specifically, if two domains are related to each

other, there may exist several common components (or latent ) ) _

variables) underlying them. Some of these components mayhere is a universal RKHYSteinwart, 2001, and ¢ :

cause the data distributions between domains to be differentt — - , o

while others may not. Some of these components may cap- Therefore, the distance between distributions of two sam-

ture the intrinsic structure underlying the original data, whilePles can be well-estimated by the distance between the means

others may not. Our goal is to discover those component8f the two samples mapped into a RKHS.

that do not cause distribution change across the domains and

capture the structure of the original data well. We will show3 Transfer Component Analysis

in this paper that, compared to MMDE, TCA is much more

efficient and can handle the out-of-sample extension problen?25€d 0n the inputses, } and outputsys, } from the source
g)maln, and the input$zr, } from the target domain, our

The rest of the paper is organized as follows. Section 2 firs sk is to predict the unknown outpuigz, } in the target do-
describes the problem statement and preliminaries of domaifj ~. P N OutpUGr: ;. getd
ain. The general assumption in domain adaptation is that

adaptation. Our proposed method is presented in Section% . - !
We then review some related works in Section 4. In Sectior < margmlal den§|t|e§?(X5) and Q(XT)’ are very differ-
ent. In this section, we attempt to find a common latent

5, we conduct a series of experiments on indoor WiFi local- X
ization and text classification. The last section gives Soméepresentatmn for botlks and X that preserves the data

. . : configuration of the two domains after transformation. Let
conclusive discussions. g

In the sequelA = 0 (resp. A = 0) means that the ma- g?? iesg;e/d}nc;nlg(;e(g;t;?n§;9rn;a?ggv ?e.:ﬁ ¢(_;3T7_)[} ;ﬁé
trix A is symmetric and positive definite (pd) (resp. positive X§ _ SX, be the trian,sforTme din Tfjt sets from the source
semidefinite (psd)). Moreover, the transpose of vector / mac Tat aﬁd conbined domains. res E:-ctivel Then. we desi}e
trix (in bothTtheTinput and feature spaces) is denoted by th agtP’(X’) — Q'(X}) ’ P Y. '
X . ) . L) = 7).
frlz%rig;:gte;;lhéstr?ceep;eudo inverse of the matu and Assuming that is the feature map induced by a universal
’ kernel. As shown in Section 2.1, the distance between two
S ) ) distributions? and Q can be empirically measured by the
2 Preliminaries of Domain Adaptation (squared) distance between the empirical means of the two

: . .domains:
In this paper, we focus on the setting where the target domain

ni na

2 o) — o 2 o(yi)

i=1 i=1

)

H
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has no labeled training data, but has plenty of unlabeled data. T 1 &2

We also assume that some labeled dataare available in  Dist(Xg, X;)=|— Z ¢(rs,) — — Zd)(xn) . (2

a source domain, while only unlabeled d&a are available L3 Wy n2 4 H

in the target domain. We denote the source domain data as i i ,

Ds = {(¢5,.Ys,)s-- -+ (¥5,,,ys,, )}, wherezs, € X is the The'refo're, a Qe5|red_nonllnear mappingan bg found by
input andys, € V is the corresponding output. Similarly, Minimizing this quantity. Howeve is usually highly non-
we denote the target domain datals = {7, , ... ’mTHQ}' linear and a direct optimization of (2) can get stuck in poor

local minima. We thus need to find a new approach, based on
the following assumption.

The key assumptionin the proposed domain adaptation set-
ting is thatP # Q, but P(Ys|¢(Xs)) = P(Yr|¢(X7)) un-

where the inputcr, is also inX. Let P(Xg) and Q(Xr)
(or P and Q for short) be the marginal distributions &fg
and X, respectively. In general? and Q can be different.
Our task is then to predict the labgs,’s corresponding to ; : .
the inputszr,’s in the target domain. The key assumption der a transformation mapping ¢ on the input.

; : ; ; P In Section 3.1, we first revisit Maximum Mean Discrep-
n a typical domain adaptation setting is that , but . .
IP(YS\y)?IS) _ P(YTIIXT) .p I Ing s that 7~ Q, bu ancy Embedding (MMDE) which proposed to learn the kernel

matrix K corresponding to the nonlinear mappipdy solv-

ing a SDP optimization problem. In Section 3.2, we then pro-
pose a factorization of the kernel matrix for MMDE. An ef-
Many criteria, such as thi€ullback-Leibler(KL) divergence ficient eigendecomposition algorithm for kernel learning and
can be used to estimate the distance between distributionsomputational issues are discussed in Sections 3.3 and 3.4.

2.1 Maximum Mean Discrepancy



3.1 Kernel Learning for Domain Adaptation where k, = [k(z1,2),..., k(T 1ny,2)] € RMtn2,

Instead of finding the nonlinear transformatigrexplicitly, Hence, the kerndl in (6) facilitates a readily parametric form
Panet al.[200d proposed to transform this problem as a for out-of-sample kernel evaluations.

kernel learning problem. By virtue of the kernel tricke( Moreover, using the definition df in (5), the distance be-
k(xi,x5) = ¢(x;)' ¢(z;)), the distance between the empirical tween the empirical means of the two domains can be rewrit-
means of the two domains in (2) can be written as: ten as:
Dist(X§, X)) = tr(K L), 3) Dist(X§, X7) =tr(KWW T K)L)
where =tr(W' ' KLKW). (7)
K K .
K= { Koo Kiﬂ (4) 3.3 Transfer Components Extraction

is & (ny + 1) x (n1 + na) kemel matrix,Ks s, K77 and In minimizing criterion (7), a regularization term@ ' W)

Ks.r respectively are the kemel matrices definedsinn the is usually needed to control the complexity df. As will

datain the source domain. taraet domain. and cross domainbe shown later in this section, this regularization term can
) ' 9 : iy 1 Zvoid the rank deficiency of the denominator in the general-
andL = [L”] = 0 with Lij =z if Ti, Ty € Xs; Lij = ==
1

n3 ized eigendecomposition. The kernel learning problem for
if z;,2; € Xr; otherwise— . domain adaptation then reduces to:
In the transductive setting, learning the kerkél, -) can ; T T
be solved by learning the kernel matrx instead(.5 I|2|[Pan W tr(I;V W)+ p (W KLKW)
et al, 2009, the resultant kernel matrix learning problem is st W KHKW =1, (8)
formulated as aemi-definite progrartSDP). Principal Com-  wherey is a trade-off parametef, ¢ R™*™ is the identity
ponent Analysis (PCA) is then applied on the learned kernematrix, H = I,,, 1, — m}rnzlﬂ is the centering matrix,

matrix to find a low-dimensional latent space across domainsyhere1 e R™+2 is the column vector with all ones, and
This is referred to as Maximum Mean Discrepancy Embedy . ¢ R(ni+n2)x(mi+n2) js the identity matrix. More-
1 2 "

ding (MMDE). over, note that the constraibfit " K HKW = I is added in
3.2 Parametric Kernel Map for Unseen Patterns (8) to avoid the trivial solutionl’ = 0), such that the trans-

) R ] e formed patterns do not collapse to one point, which can in-
There are several limitations of MMDE. First, it is trans- fjate the learned kernél such that the embedding of data
ductive and cannot generalize on unseen patterns. Second.preserved as in kernel PCA.
the criterion (3) required(” to be positive semi-definite and  Though the optimization problem (8) involves a non-
the resultant kernel learning problem has to be solved by.onvex norm constraintV T K HKW = I, it can still be
expensive SDP solvers. Finally, in order to construct low-so|ved efficiently by the following trace optimization prob-
dimensional representations &f; and X/, the obtainedX  |gm:
has to be further post-processed by PCA. This may potens . Lo
tially discard useful information i . rErrorﬁS|2;[;Odn;S The optimization problem (8) can be re-

In this paper, we propose an efficient method to find a non-
linear mappings based on kernel feature extraction. It avoids min tr(WTKHEKW)'W (I + uKLK)W),  (9)
the use of SDP and thus its high computational burden. Morec-)r w
over, the learned kernglcan be generalized to out-of-sample . N
patterns directly. Besides, instead of using a two-step ap- max (W ([ + uKLK)W)™" W KHKW). (10)
proach as in MMDE, we propose a unified kernel IearningP f The L . £(8)i
method which utilizes an explicit low-rank representation. roof. The Lagrangian of (8) is

First, recall that the kernel matrik in (4) can be decom-  tr(W (I + uKLEK)W) —tt(W'KHEKW —1)Z), (11)
posed adt’ = (KK~'/2)(K~1/2K), which is often known  yherez is a symmetric matrix. Setting the derivative of (11)
as the empirical kernel meBctolkopf et al, 1999. Con- /1t W to zero, we have
sider the use of & + na) x m matrix W to transform the (I + uKLEK)W = KHKW Z (12)
corresponding feature vectors toradimensional space. In H - ’

generalyn < ny + ny. The resultant kernel matriss then ~ Multiplying both sides on the left by¥’”, and then on
substituting it into (11), we obtain (9). Since the matrix

K=(KKY?W)WTK'?2K)=KWWTK, (5 I+ uKLK is non-singular benefited from the regularization
—~ . term t{W T W), we obtain an equivalent trace maximization
whereW = K~1/21y € R(mi+n72)xm |n particular, the cor- W W), w ! quivi ximizat

: . roblem (10). O
responding kernel evaluation éfbetween any two patterns P (10)

a; andz; is given by Similar to kernel Fisher discriminant (KFD), the solution
Fana) = kT WW Tk, | 6 _ofW_m (10) is the eigenvectors corresponding tothéead-
(@i, z;) i J © ing eigenvalues ofl + uKLK) 'KHK, where at most
'As is common practice, one can ensure that the kernel matrig1 + 72 — 1 eigenvectors can be extracted. In the sequel,
K is positive definite by adding a smalt> 0 to its diagona[Panet ~ the proposed method is referred to Bransfer Component
al., 200§. Analysis(TCA).



3.4 Computational Issues 5 Experiments

The kernel learning algorithm ifPanet al, 200§ relies on  In this section, we apply the proposed domain adaptation al-

SDPs. As there ar@((n; +n,)?) variables ink, the overall ~ 90rithm TCA on two real-world problems: indoor WiFi lo-
training complexity isO((n; -+ n2)%) [Nesterov and Ne- calization and text classification.
mirovskii, 1994. This becomes computationally prohibitive 5.1 Cross-domain WiFi Localization

even for small-sized problems. Note that criterion (3) in this or cross-domain WIFi localization, we use a dataset pub

kernel learning problem is similar to the recently proposec#.: = : :

supervised dimensionality reduction methedlored MvU  lished in the 2007 IEEE ICDM Contebranget al, 200d.
This dataset contains some labeled WiFi data collected in

[Songet al., 2004, in which low-rank approximation is used gme perioda (the source domain) and a large amount of un-
to reduce the number of constraints and variables in the SDI :beled WiFi data collected in time peridi (the target do-

However, gradient descent is required to refine the embedding . X
ain). Here, a label means the corresponding location where

space and thus the solution can get stuck in a local minimu he WiFi data are received. WiFi data collected from different

on the other hgnd, our prop_o_sed k_ernel learning method ! ime periods are considered as different domains. The task is
quires only & simple and efficient eigendecomposition. Thi o predict the labels of the WiFi data collected in time pe-

2\ ti _ i _
takes onlyO)(m(n, +n,)”) time when non-zero eigenvec riod B. More specifically, all the WiFi data are collected in

tors are o be extracté@orensen, 1946 an indoor building around45.5 x 37.5 m?2, 621 labeled data
4 Related Works are collected in time period and 3128 unlabeled data are
collected in time periodB.

Domain adaptation, which can be considered as a special We conduct a series of experiments to compare TCA with
setting of transfer learninfPan and Yang, 2008has been some baselines, including other feature extraction methods
widely studied in natural language processing (NUdo  such as KPCA, sample selection bias (or co-variate shift)
and Zhang, 2005; Blitzeet al, 2006; Daurg Ill, 2007.  methods, KMM and KLIEP and a domain adaptation method,
Ando and Zhand2005 and Blitzer[2006 proposed struc- SCL. For each experiment, all labeled data in the source
tural correspondence learning (SCL) algorithms to learn thelomain and some unlabeled data in the target domain are
common feature representation across domains based a@sed for training. Evaluation is then performed on the re-
some heuristic selection of pivot features. Daulit [2007 maining unlabeled data (out-of-sample) in the target domain.
designed a heuristic kernel to augment features for solvinghis is repeated0 times and the average performance is
some specific domain adaptation problems in NLP. Besidegjsed to measure the generalization abilities of the methods.
domain adaptation has also been investigated in other applin addition, to compare the performance between TCA and

cation areas such as sentiment classifical®litzer et al,  MMDE, we conduct some experiments in the transductive
2007. Theoretical analysis of domain adaptation has alssetting[Nigam et al, 200d. The evaluation criterion is the
been studied ifBen-Davidet al, 2007. Average Error Distance (AED) on the test data, and the lower

The problem of sample selection bias (also referred to athe better. For determining parameters for each method, we
co-variate shift) is also related to domain adaption. In samrandomly select a very small subset of the target domain data
ple selection bias, the basic assumption is that the samplinp tune parameters. The values of parameters are fixed for all
processes between the training data,, and test dataX,; the experiments.
may be different. As a resultP(Xy,.,) # P(Xs), but Figure 1(a) compares the performance of Regularized
P(Yirn|Xrn) = P(Yist|Xist). Instance re-weighting is a Least Square Regression (RLSR) model on different feature
major technique for correcting sample selection lpidisang  representations learned by TCA, KPCA and SCL, and dif-
et al, 2007; Sugiyamaet al, 2008. Recently, a state-of- ferent re-weighted instances learned by KMM and KLIEP.
art method, called kernel mean matching (KMM), is pro- Here, we use: = 0.1 for TCA and the Laplacian kernel.
posed[Huanget al, 2007. It re-weights instances in a As can be seen, the performance can be improved with the
RKHS based on the MMD theory, which is different from our new feature representations of TCA and KPCA. TCA can
proposed method. Sugiyaned al.[200d proposed another achieve much higher performance because it aims at finding
re-weighting algorithm, Kullback-Leibler Importance Esti- the leading components that minimize the difference between
mation Procedure (KLIEP), which is integrated with cross-domains. Then, from the space spanned by these components,
validation to perform model selection automatically. Xielg the model trained in one domain can be used to perform ac-
al.[2007 proposed to correct the labels predicted by a shift-curate prediction in the other domain.
unaware classifier towards a target distribution based on the Figure 1(b) shows the results under a varying number of
mixture distribution of the training and test data. Matchingunlabeled data in the target main. As can be seen, with only
distributions by re-weighting instances is also used success:few unlabeled data in the target domain, TCA can still find
fully in Multi-task Learning[Bickel et al, 2004. However, agoodfeature representation to bridge between domains.
unlike instance re-weighting, the proposed TCA method can Since MMDE cannot generalize to out-of-sample patterns,
cope with noisy features (as in image data and WiFi data) byn order to compare TCA with MMDE, we conduct another
effectively denoising and finding a latent space for matchingseries of experiments in a transductive setting, which means
distributions across different domains simultaneously. Thusthat the trained models are only evaluated on the unlabeled
TCA can be treated as an integration of unsupervised featumata that are used for learning the latent space. In Figure 1(c),
extraction and distribution matching in a latent space. we apply MMDE and TCA on621 labeled data from the
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Figure 1: Comparison of Average Error Distance (in m).

source domain and00 unlabeled data from the target do- data in the target domain. This is repeat@&dimes and the
main to learn new representations, respectively, and then traswverage results reported.
RLSR on them. More comparison results in terms of ACE Similar to the experimental setting on WiFi localization,
with varying number of training data are shown in Table 1.we conduct a series of experiments to compare TCA with
The experimental results show that TCA is slightly higherKPCA, KMM, KLIEP and SCL. Here, the support vector ma-
(worse) than MMDE in terms of AED. This is due to the non- chine (SVM) is used as the classifier. The evaluation crite-
parametric kernel matrix learned by MMDE, which can fit rion is the classification accuracy (the higher the better). We
the observed unlabeled data better. However, as mentioned @xperiment with both the RBF kernel and linear kernel for
Section 3.4, the cost of MMDE is expensive due to the com{eature extraction or re-weighting used by KPCA, TCA and
putationally intensive SDP. The comparison results betweekKMM. The kernel used in the SVM for final prediction is a
TCA and MMDE in terms of computational time on the WiFi linear kernel, and the paramejein TCA is set to0.1.
dataset are shown in Table 2. As can be seen from Table 3, different from experiments
) _ ) ) on the WiFi data, sample selection bias methods, such as

Table 1: ACE (in m) of MMDE and TCA with 0 dimensions kMM and KLIEP perform better than KPCA and PCA on the
and varying # training data (# labeled data in the source dogxt data. However, with the feature presentations learned by
main is fixed to621, # unlabeled data in the target domain TCA, SVM performs the best for cross-domain classification.
varies from100 to 800.) _ This is because TCA not only discovers latent topics behind

# unlabeled and labeled data used for training the text data, but also matches distributions across domains in
21| 821 921 [1,021[1,12111,221] 1,321[ 1,428 g |51ent space spanned by the latent topics. Moreover, the

TCA | 2.413|2.378|2.313|2.285| 2.271| 2.285| 2.287| 2.289 : :
VIMDE| 2 31512 24712 20812 2122207 [ 2 182 2 257 2 279 performance of TCA using the RBF kernel is more stable.

6 Conclusion and Future Work

Table 2: CPU training time (in sec) of MMDE and TCA with Learning feature representations is of primarily an important
varying # training data. task for domain adaptation. In this paper, we propose a hew
# unlabeled and labeled data used for training feature extraction method, called Transfer Component Analy-
721]1821]921[1,021 1,121]1,221]1,321] 1,421]  sis (TCA), to learn a set of transfer components which re-
TCA |25 |30 |46 | 59 | 72 | 94 | 115 | 145 duce the distance across domains in a RKHS. Compared to
MMDE (3,2093,5394,168 4,940/ 10,093| 14,165 18,094 33,004 the previously proposed MMDE for the same task, TCA is
much more efficient and can be generalized to out-of-sample
5.2 Cross-domain Text Classification patterns. Experiments on two real-world datasets verify the
. . A ... _effectiveness of the proposed method. In the future, we are
In this section, we perform cross-domain binary Class'f'czﬁanning to take side information into account when learning

tion experiments on a preprocessed dataset of Reuters-21545, 4o sfer components across domains, which may be better
These data are categorized to a hierarchical structure. D 8 the final classification or regression tasks

from different sub-categories under the same parent category
are considered to be from different but related domains. The

task is to predict the labels of the parent category. By follow-/  Acknowledgement
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Table 3: Comparison between Different Methods (number inside parentheses is the standard deviatibrepeditions).

features #features peoplevsplaces| orgsvspeople | orgsvsplaces
Original 0.5198 (.0252) | 0.6696 (.0287) | 0.6683 (.0221)
PCA 5 0.5564 (.0788) | 0.5574 (.0760) | 0.5653 (.0984)

10 0.5453 (.0911) | 0.6470 (.0598) | 0.6140 (.0534)

20 0.5424 (.0590) | 0.6703 (.0334)| 0.6491 (.0391)

30 0.5631 (.0346) | 0.6652 (.0549) | 0.6114 (.0564)

KPCA (RBF) 5 0.5900 (.0185) | 0.5863 (0.0405)] 0.5883 (.0185)
10 0.5934 (.0169) | 0.5955 (0.0676)| 0.6267 (.0814)

20 0.6032 (.0323) | 0.5968 (0.0705)| 0.6098 (.0315)

30 0.6000 (.0267) | 0.5964 (0.0742)| 0.6247 (.0438)

TCA (linear) 5 0.5804 (.0528) | 0.6397 (.0897)| 0.6403 (.0722)
10 0.5495 (.0764) | 0.7308 (.0495) | 0.7006 (.0527)

20 0.5600 (.0969) | 0.7425 (.0579)| 0.6720 (.0374)

30 0.5468 (.0635) | 0.7330 (.0432) | 0.5989 (.0700)

TCA (RBF) 5 0.6129 (.0176) | 0.6297 (.0302) | 0.6899 (.0195)
10 0.5920 (.0148) | 0.7088 (.0251) | 0.7042 (.0218)

20 0.5954 (.0201) | 0.7196 (.0235) | 0.6942 (.0220)

30 0.5916 (.0166) | 0.7217 (.0275) | 0.6896 (.0203)

SCL 0.5267 (.0310) | 0.6834 (.0327)| 0.6733 (.0198)
KMM (linear) 0.5836 (.0159) | 0.7006 (.0353) | 0.6714 (.0263)
KMM (RBF) 0.5836 (.0159) | 0.6968 (.0224) | 0.6655 (.0245)
KLIEP 0.5758 (.0241) | 0.6946 (.0192)| 0.6638 (.0112)
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